skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Haoyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available March 1, 2026
  3. Polycrystalline ion conductors are widely used as solid electrolytes in energy storage technologies. However, they often exhibit poor ion transport across grain boundaries and pores. This work demonstrates that strategically tuning the mesoscale microstructures, including pore size, pore distribution, and chemical compositions of grain boundaries, can improve ion transport. Using LiTa2PO8as a case study, we have shown that the combination of LiF as a sintering agent with Hf4+implantation improves grain-grain contact, resulting in smaller, evenly distributed pores, reduced chemical contrast, and minimized nonconductive impurities. A suite of techniques has been used to decouple the effects of LiF and Hf4+. Specifically, LiF modifies particle shape and breaks large pores into smaller ones, while Hf4+addresses the chemical mismatches between grains and grain boundaries. Consequently, this approach achieves nearly two orders of magnitude improvement in ion conduction. Tuning mesoscale structures offers a cost-effective method for enhancing ion transport in polycrystalline systems and has notable implications for synthesizing high-performance ionic materials. 
    more » « less
    Free, publicly-accessible full text available May 16, 2026
  4. Abstract All‐solid‐state potassium batteries emerge as promising alternatives to lithium batteries, leveraging their high natural abundance and cost‐effectiveness. Developing potassium solid electrolytes (SEs) with high room‐temperature ionic conductivity is critical for realizing efficient potassium batteries. In this study, we present the synthesis of K2.98Sb0.91S3.53Cl0.47, showcasing a room‐temperature ionic conductivity of 0.32 mS/cm and a low activation energy of 0.26 eV. This represents an increase of over two orders of magnitude compared to the parent compound K3SbS4, marking the highest reported ionic conductivity for non‐oxide potassium SEs. Solid‐state39K magic‐angle‐spinning nuclear magnetic resonance on K2.98Sb0.91S3.53Cl0.47reveals an increased population of mobile K+ions with fast dynamics. Ab initio molecular dynamics (AIMD) simulations further confirm a delocalized K+density and significantly enhanced K+diffusion. This work demonstrates diversification of the anion sublattice as an effective approach to enhance ion transport and highlights K2.98Sb0.91S3.53Cl0.47as a promising SE for all‐solid‐state potassium batteries. 
    more » « less
  5. Kamat, Prashant V (Ed.)
    Redox-active molecules, or redoxmers, in nonaqueous redox flow batteries often suffer from membrane crossover and low electrochemical stability. Transforming inorganic polyionic redoxmers established for aqueous batteries into nonaqueous candidates is an attractive strategy to address these challenges. Here we demonstrate such tailoring for hexacyanoferrate (HCF) by pairing the anions with tetra-n-butylammonium cation (TBA+). TBA3HCF has good solubility in acetonitrile and >1 V lower redox potential vs the aqueous counterpart; thus, the familiar aqueous catholyte becomes a new nonaqueous anolyte. The lowering of redox potential correlates with replacement of water by acetonitrile in the solvation shell of HCF, which can be traced to H-bond formation between water and cyanide ligands. Symmetric flow cells indicate exceptional stability of HCF polyanions in nonaqueous electrolytes and Nafion membranes completely block HCF crossover in full cells. Ion pairing of metal complexes with organic counterions can be effective for developing promising redoxmers for nonaqueous flow batteries. 
    more » « less
  6. 2LiX-GaF3(X = Cl, Br, I) electrolytes offer favorable features for solid-state batteries: mechanical pliability and high conductivities. However, understanding the origin of fast ion transport in 2LiX-GaF3has been challenging. The ionic conductivity order of 2LiCl-GaF3(3.20 mS/cm) > 2LiBr-GaF3(0.84 mS/cm) > 2LiI-GaF3(0.03 mS/cm) contradicts binary LiCl (10−12S/cm) < LiBr (10−10S/cm) < LiI (10−7S/cm). Using multinuclear7Li,71Ga,19F solid-state nuclear magnetic resonance and density functional theory simulations, we found that Ga(F,X)npolyanions boost Li+-ion transport by weakening Li+-Xinteractions via charge clustering. In 2LiBr-GaF3and 2LiI-GaF3, Ga-X coordination is reduced with decreased F participation, compared to 2LiCl-GaF3. These insights will inform electrolyte design based on charge clustering, applicable to various ion conductors. This strategy could prove effective for producing highly conductive multivalent cation conductors such as Ca2+and Mg2+, as charge clustering of carboxylates in proteins is found to decrease their binding to Ca2+and Mg2+
    more » « less
  7. Abstract Polyanion rotations are often linked to cation diffusion, but the study of multiple polyanion systems is scarce due to the complexities in experimentally determining their dynamic interactions. This work focuses on BH4‐based argyrodites, synthesized to achieve a high conductivity of 11 mS cm−1. Advanced tools, including high‐resolution X‐ray diffraction, neutron pair distribution function analysis, and mutinuclear magic‐angle‐spinning nuclear magnetic resonance (NMR) spectroscopy and relaxometry, along with theoretical calculations, are employed to unravel the dynamic intricacies among the dual polyanion lattice and active charge carriers. The findings reveal that the anion sublattice of Li5.07PS4.07(BH4)1.93affords an even temporal distribution of Li among PS43−and BH4, suggesting minimal trapping of the charge carriers. Moreover, the NMR relaxometry unveils rapid BH4rotation on the order of ∼GHz, affecting the slower rotation of neighboring PS43−at ∼100 MHz. The PS43−rotation synchronizes with Li+motion and drives superionic transport. Thus, the PS43−and BH4polyanions act as two‐staged dual motors, facilitating rapid Li+diffusion. 
    more » « less